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A theoretical model shows that in the context of a Ginzburg-Landau equation with rapidly varying, mean-
zero dispersion, stable and attracting self-similar breathers are formed with parabolic profiles. These self-
similar solutions are the final solution state of the system, not a long-time, intermediate asymptotic behavior.
A transformation shows the self-similarity to be governed by a nonlinear diffusion equation with a rapidly
varying, mean-zero diffusion coefficient. The alternating sign of the diffusion coefficient, which is driven by
the dispersion fluctuations, is critical to supporting the parabolic profiles which are, to leading order, of the
Barenblatt form. Our analytic model proposes a mechanism for generating physically realizable temporal
parabolic pulses in the Ginzburg-Landau model.
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I. INTRODUCTION

Self-similarity is a ubiquitous phenomenon exhibited in a
broad range of physical and biological systems �1�. It is par-
ticularly prevalent in nonlinear dissipative systems where
initial transients are attenuated and the solution approaches a
self-similar form at long times, i.e., the intermediate
asymptotic regime �1�. In this paper, we show that a rapidly
varying, mean-zero dispersion fluctuation in the Ginzburg-
Landau �GL� equation results in the spontaneous formation
of breathing, self-similar parabolic structures �Barenblatt so-
lutions�. This attracting state, from a Poincaré-map point of
view, is the steady state of the system and not a transient,
intermediate pulse form typical of self-similarity solutions.
Such solutions have been recently observed experimentally
�2� and touched upon theoretically �3� in the context of a
mode-locked laser. However, the previous theory fails to
capture the detailed pulse shape, its attracting nature, and its
broader applicability. Here, we provide a theoretical descrip-
tion of such an attracting state which arises in the context of
the Ginzburg-Landau model with rapidly varying, mean-zero
dispersion. The breathing parabolic nature of the solution is
driven by the mean-zero dispersion fluctuations, while the
attracting behavior arises from the dissipative terms in the
GL equation. Thus the self-similar parabolic structures result
as a different hybrid of dispersion-management �DM� tech-
niques and dissipative self-similarity.

The existence of self-similarity implies a certain spatial
and/or temporal order in the system that cannot only be used
to gain insight into the interdependences of a given system,
but can often be exploited from an analytic point of view.
The simplest example of self-similar behavior arises from
considering the heat equation, which is the prototypical
model for introducing the concept of self-similarity and its
transient, long-time behavior �4�. Certain nonlinear generali-
zations of the heat equation, i.e., the porous-media equation,
have also been considered and their self-similar behavior
�Barenblatt solutions� assessed �5�. Much of the extensive

interest in the porous-media equation arises from nonlinear
diffusive phenomenon in thermal waves �6�, flow of thin
films �7�, groundwater flow �8�, population dynamics �9�,
dispersion-managed systems �10�, and mode-locked lasers
�3�. The mathematical analysis of the porous-media equation
suggests that unlike its linear counterpart, its solutions have
compact support and finite speeds of propagation. In contrast
to these diffusive processes, self-similarity has also been ex-
hibited as the long-time transient in certain amplifier systems
�11,12�. The term “similariton” commonly implies the com-
bination of some underlying self-similar structure with soli-
tonlike �dissipative soliton� persistence of a localized solu-
tion. This use of the term “similariton” in the context of
mode-locked lasers has been widely used �13–18� and is also
observed in a broad range of other applications.

A perturbed version of the porous-media equation arises
in the dynamics of the GL equation with a rapidly varying,
mean-zero dispersion. The resulting self-similar, parabolic
structure results directly from the dispersion fluctuations.
The importance of DM and its impact on physical systems is
well known. DM solitons are critical for characterizing
dispersion-managed systems which arise, for instance, in op-
tical fiber communication systems �19–21� and Bose-
Einstein condensates �BECs� �22,23�. These solutions arise
in a Hamiltonian system context and have a Gaussian form.
Thus they are not attractors to the underlying system. In
contrast, more general Ginzburg-Landau models include dis-
sipative effects that modify the behavior so that attracting
states are possible. It is these dissipative terms that render the
parabolic breathers an attractor. Such an example arises in
mode-locked lasers �2,3� and BECs �24�. Thus the periodic,
mean-zero dispersion fluctuations with dissipative effects are
critical for supporting the attracting parabolic states.

The paper is outlined as follows. In Sec. II the governing
Ginzburg-Landau equation is presented with a rapidly vary-
ing, mean-zero dispersion. Using a linear transformation an
effective evolution equation is derived. In Sec. III, we con-
sider the leading-order behavior given by the porous-media
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equation which has analytic solutions of the Barenblatt form.
Section IV considers correction terms which lead to a per-
turbed version of the porous-media equation resulting in an
attracting self-similar, parabolic structure. A brief conclusion
of these results is given in Sec. V.

II. EFFECTIVE EVOLUTION EQUATION

The cubic-quintic GL equation

iut + 1
2d�t�uxx + �u�2u = i�u + i��u�2u + i�uxx − i��u�4u �1�

describes a variety of nonequilibrium phenomena �see �25�
and references therein�. In the context of mode-locked lasers,
t is the propagation distance that the pulse travels in a laser
cavity, x is the retarded time, u is the complex envelope of
the electric field, d is the group-velocity dispersion coeffi-
cient, � is the linear gain-loss coefficient, i�utt accounts for
spectral filtering ���0�, ��u�2u represents the nonlinear gain
which arises from saturable absorption ���0�, and � ��0�
is the saturation of the nonlinear gain.

Here, d�t� characterizes the given dispersion fluctuations
�map� in the system. If the right-hand side of Eq. �1� is per-
turbatively small, the leading-order equation is the well-
known nonlinear Schrödinger �NLS� equation whose soliton
solution �d�0� results from a fundamental balance between
linear dispersion and cubic nonlinearity.

In this paper, we investigate Eq. �1� when the dispersion
length T is much longer than the typical period P of the
dispersion map, so that

� = P/T � 1 �2�

and the dispersion fluctuations occur on a rapid scale. The
period P is simply determined by the physical length of the
laser cavity, while the dispersion length T is related to the
pulse width of the mode-locked pulses. Specifically, the dis-
persion length is the length it takes for the full-width-at-half-
maximum pulse width to double in the absence of nonlineari-
ties �26�. For convenience and simplicity, we let

d = d�t/�� = cos�2	t/�� . �3�

Figure 1 illustrates the dispersion map considered here along
with the accumulated dispersion 
�t�=�0

t d�s�ds
=� / �2	�sin�2	t /��. Note that although the results apply to a

general d�t�, it will prove helpful to consider the particular
case here of a simple sinusoidal dispersion map �see Fig. 1�.

Figure 2 shows the numerical simulation of Eq. �1� with
dispersion �3�. The top panel of this figure shows the long-
time behavior �after 600 map periods� as the solution settles
to the stable and attracting parabolic state. The middle panel
shows the intraperiod breathing dynamics over four map pe-
riods once the solution has settled. Finally, the bottom panel
demonstrates the parabolic nature by comparing on a loga-
rithmic scale the attracting pulse shape from the numerical
simulation along with a parabolic �Barenblatt� and hyper-
bolic secant fit. Although the parabolic fit is not exact, it
captures the intensity decay of the pulse in x and provides a
better match to the numerical solution than the hyperbolic
secant profile. This simulation suggests the existence of para-
bolic self-similarity and is in agreement with recent experi-
ments on mode-locked lasers �2�.

Simulations suggest that the dispersion fluctuations must
occur on a rapid scale in order for the parabolic states to
persist. Such a clear scale separation between the dispersion
map period and the fundamental dispersion and nonlinearity
scale suggests the application of a multiscale transformation

FIG. 1. Top: periodic dispersion map. Bottom: accumulated dis-
persion 
�t�. Note that for this particular dispersion map 
 is
bounded above by � /2	.

FIG. 2. Attracting dynamics of �a� the solution and �b� its
breathing dynamics obtained from numerical simulation of GL
equation �1� from a Gaussian initial condition with �=�=0,
�=�=0.1, and �=0.5. �a� The output is shown at the beginning of
each dispersion map, while �b� shows the last four intraperiod fluc-
tuations. �c� Comparison of the numerical solution �solid line� with
a quadratic Barenblatt profile �dashed line� and hyperbolic secant
pulse �dotted line�. The tail structure is exhibited in experiments �2�.
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technique. The transformation procedure considered relies on
the Green’s function of the linear part of the left-hand side of
Eq. �1� since it accounts explicitly for the dispersion fluctua-
tions. Using Fourier transforms, it is easy to calculate that
the Green’s function for the linear Schrödinger equation �10�

iGt + 1
2d�t/��Gxx = 0, �4�

with G�x ,x� ,0�=��x−x��, is given by

G�x,x�,t� =
exp�i	/4�
�4	
�t�

exp�− i�x − x��2

4
�t� 	 . �5�

Here 2
�t�=�0
t d�s�ds
O��� is the accumulated dispersion

for a rapidly varying, mean-zero map.
The transformation is performed by introducing the new

function A�x , t� defined by

A�x,t� =� G†�x,x�,t�u�x�,t�dx�. �6�

The evolution equation for A can be found by using the
adjoint relation u�x , t�=�G�� ,x , t�A�� , t�d�. Plugging this
into governing equation �1�, making use of Eq. �4�, then
multiplying by the adjoint G†�� ,x , t� and integrating with
respect to � gives

iAt��,t� +
�1 − i��

2	

� � ei��,�,��/
A�� + � − �,t�

�A���,t�A��,t�d�d�

= − i
�

2	
3� � �x − x��2ei��x,x�,��/
A�x�t�dx�dx

+ i�� −
�



	A��,t� − i

�

8	3
3� � � � ei���,�,�,�,��/


�A�� + � − � + � − ��A����A���A����A���d�d�d�d� ,

�7�

where the phase terms in the integrals are given by

 = − �2 − �� + �� + �� , �8a�

� = �2 − x�2 + 2�x� − ��x , �8b�

� = − �� + � − � + � − ��2 + �2 − �2 + �2 − �2 + �2. �8c�

This transformation is exact. We stress that at this point no
approximations have been made—the transformation from u
to A is simply a linear change of variables. Since 

��1,
the integrals in Eq. �7� can be approximated using stationary-
phase asymptotics �10�. Expanding the integrals about the
stationary-phase points gives the approximate evolution for
A,

iAt = �1 − i���A�2A + i�A + i�Axx + i��A�4A

+ 2i
�t��A��Ax�2 + 2A�Ax�2 + A2Axx
� � + O�
qi� , �9�

where qi can be any of the small parameters �, �, 
, �, or �.
This gives the effective evolution for A�x , t�. Equation �9�
neglects higher-order terms since the equation parameters �,
�, �, and � are small and 

��1.

Effective equation �9� can be put into a more transparent
form with the amplitude-phase decomposition

A�x,t� = ���x,t�exp�i��x,t�� . �10�

Inserting Eq. �10� into Eq. �9� yields

�t = 
�t���2�xx − 2��� − �� + ��2� + ���xx −
�x

2

2�
− 2��x

2	 ,

�11a�

�t = − � − 2
�t���xx + ���xx +
1

�
�x�x	 . �11b�

A key observation is for 
�0 phase equation �11b� is ill
posed, whereas for 
�0 amplitude equation �11a� is ill
posed. This problem is an artifact of the averaging process
and can be treated via regularization or by including higher-
order correction terms �10�. In contrast to other averaging
techniques used on dispersion-managed systems �27�, we
emphasize that the averaging technique used here retains the
critical dependence of the parameter 
 on t. This plays a key
role in the stabilization of the parabolic state. Indeed, if the

�t� parameter is averaged out to be a constant, the theory
fails to correctly capture the breathing nature of the solu-
tions. Specifically, the profile undergoes typical self-similar
broadening until the expansion formally breaks down at
t
1 /�� �10�.

III. LEADING-ORDER BARENBLATT SELF-SIMILARITY

In the limit where the dissipative perturbations on the
right-hand side of Eq. �1� are small in comparison with the
dispersion map, i.e., �� ,� ,� ,�����1, the leading-order
amplitude equation is governed by the porous-media equa-
tion �3�

�t = 
�t���2�xx. �12�

The porous-media equation has the Barenblatt similarity so-
lution �1�

�u�2 � ��x,t� 

1

12�� + t��1/3a�
2 − � �x − x��

�� + t��1/3	2�
+
,

�13�

where �=��t�=2�0
t 
�s�ds, f+=max�f ,0�, and the solution is

characterized by the three parameters �a� ,x� , t�� which rep-
resent the mass, center position, and pulse width of the so-
lution, respectively. Note that u�A when ��1 �10�. Here, to
first order in 

�, the evolution equation for the amplitude
decouples from the equation for the phase. Figure 3 illus-
trates the typical time-dependent evolution of Barenblatt so-
lution �13� over four cavity round trips. We emphasize that
the breathing dynamics results from the periodic fluctuations
in the integral of the cumulative dispersion ��t�. Indeed, the
averaging technique used here retains the oscillatory nature
of the dispersion map in the form of a t-dependent oscillatory
coefficient in Eq. �13�. This oscillatory variation suppresses
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the structure from undergoing its usual self-similar broaden-
ing and allows for stable self-similar breathers.

IV. ATTRACTING PARABOLIC STATES

Although Barenblatt solution �13� captures the fundamen-
tal self-similar structure, it is not the attracting state of the
underlying system. This is expected since we have neglected
the dissipative terms needed to create an attractor. Further,
the Barenblatt solution has unphysical discontinuous deriva-
tives at its edges. So although insightful, it is a mathematical
idealization that is physically unrealizable. In many applica-
tions, spectral filtering is much weaker than other dissipative
terms, i.e., �� �� ,� ,� ,
�. In this case, the amplitude equa-
tion

�t = 
�t���2�xx − 2��� − �� + ��2� �14�

is still decoupled from the phase equation. Although exact
solutions to Eq. �14� are not attainable, this equation sheds
light as to why parabolic states persist in this system. Spe-
cifically, for small values of the parameters �, �, and �, Eq.
�14� is perturbatively close to Eq. �12�. Likewise, the solu-
tions of the two equations should also be perturbatively close
so that the leading-order behavior of Eq. �14� inherits the
self-similar Barenblatt structure of Eq. �13�. Note that this
implies that Eq. �14� is not strictly self-similar as certain
symmetries associated with Eq. �12� are broken. Regardless,
the inclusion of dissipative terms allows for attracting para-
bolic breathers to exist for a wide range of parameter space.
Further, numerical simulations suggest the parabolic states
are robust against a variety of perturbations including white-
noise fluctuations.

Figure 4 shows the numerical simulation of Eq. �14� from
initial amplitude ��x ,0�=�2 exp�−x2�. The output point in
the Poincaré map is taken to be at the beginning of each map
period. Figure 4�a� shows that the initial Gaussian structure
quickly settles to a steady-state solution in the Poincaré map.
In contrast to the Barenblatt solution, the output pulse profile
here has finite derivatives at its edges. Figure 4�b� plots the
corresponding �� ,�x� phase plane and shows that there is
indeed an attracting homoclinic orbit �solid line� which rep-
resents the steady-state solution. To show that this attracting

state has a parabolic profile, the output pulse �once settled to
the parabolic breather�, along with a Barenblatt quadratic
�dashed line� and a hyperbolic secant �dotted line� fit, is plot-
ted in Fig. 4�c�. In addition, the numerical solution for
Ginzburg-Landau equation �1� with parameters �=�=0,
�=�=0.1, and �=0.5 is included �solid gray line�. This
shows that the solutions to Eqs. �1� and �14� are perturba-
tively close as expected. Further, the remarkable agreement
between the solution profile of Eq. �14� agrees with experi-
ments �2�. Unlike the Barenblatt solution, the parabolic so-
lution to Eq. �14� is a physically realizable, smooth profile
that correctly captures the tail structure and attracting nature
observed in experiments �2�.

Similar to dispersion-managed solitons �19–21� where the
dispersion map induces Gaussian-type breathing solutions,
the periodic variation in 
�t� allows for the parabolic solu-
tion to breath within each period. Figure 5�a� shows the pulse
evolution �once settled to the parabolic breather� over two
periods. Here we see the varying coefficient 
 in Eq. �14�
forces both broadening and compression. Indeed, the oscilla-
tory variation suppresses the parabolic structure from under-
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rb
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ts
)

FIG. 3. Typical evolution of Barenblatt similarity solution �13�
over four dispersion map periods with d�t�=cos�2	t /��. The
breathing dynamics is induced by the periodically varying diffusion
coefficient 
�t�
O���.

FIG. 4. Attracting dynamics of �a� the solution and �b� its phase
plane obtained from numerical simulation of amplitude equation
�14� from a Gaussian initial condition with �=0, �=�=0.1, and
�=0.5. The output is shown at the beginning of each dispersion
map. �c� Comparison of the parabolic solution from solving Eq.
�14� numerically �solid black line� with the solution from the full
governing Ginzburg-Landau equation �1� �solid gray line�, a qua-
dratic Barenblatt profile �dashed line�, and hyperbolic secant pulse
�dotted line�. The tail structure is also exhibited in experiments �2�.
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going its usual broadening. This allows for stable self-similar
propagation. Figure 5�b� illustrates the phase-space dynamics
in the �� ,�x� plane corresponding to the breathing parabolic
profiles over one period. In essence the rapidly varying pe-
riodic dispersion map restricts the space of the allowed ho-

moclinic orbits, thus resulting in stable pulse propagation. It
should also be noted that during the intraperiod evolution,
the pulse becomes more hyperbolic secantlike during certain
portions of the cavity period. This is similar to dispersion-
managed solitons for which the pulse is Gaussian at the pe-
riod points, but is more hyperbolic secantlike during certain
points of the dispersion map �19–21�.

V. CONCLUSION

In conclusion, we have shown that the underlying behav-
ior in the Ginzburg-Landau equation with rapidly varying,
mean-zero dispersion results in a perturbed version of the
nonlinear �porous-media� diffusion equation with mean-zero
diffusion coefficient. The dispersion fluctuations are directly
responsible for generating the mean-zero diffusion coeffi-
cient which allows the solution to be a steady-state solution
�from a Poincaré-map point of view� as opposed to the stan-
dard long-time self-similar behavior that is only an interme-
diate state. The dissipative contributions in the GL equation
make the parabolic structure an attracting state of the system.
Thus the two driving mechanisms of parabolic propagation
are the mean-zero dispersion map which generates self-
similarity �to first order�, and dissipation which makes the
self-similar structure an attractor. The combination of the
two phenomena results in the formation of the parabolic
breathers that have been recently observed experimentally in
the context of mode-locked lasers �2�. The theory produces
governing evolution equation �14� that has solutions that
agree well with experiment down to the observed oscillatory
tail structure.
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